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Abstract

If genetic architectures of various quantitative traits are similar, as studies on model organisms suggest, comparable
selection pressures should produce similar molecular patterns for various traits. To test this prediction, we used a
laboratory model of vertebrate adaptive radiation to investigate the genetic basis of the response to selection for
predatory behavior and compare it with evolution of aerobic capacity reported in an earlier work. After 13 generations
of selection, the proportion of bank voles (Myodes [¼Clethrionomys] glareolus) showing predatory behavior was five
times higher in selected lines than in controls. We analyzed the hippocampus and liver transcriptomes and found
repeatable changes in allele frequencies and gene expression. Genes with the largest differences between predatory
and control lines are associated with hunger, aggression, biological rhythms, and functioning of the nervous system.
Evolution of predatory behavior could be meaningfully compared with evolution of high aerobic capacity, because the
experiments and analyses were performed in the same methodological framework. The number of genes that changed
expression was much smaller in predatory lines, and allele frequencies changed repeatably in predatory but not in
aerobic lines. This suggests that more variants of smaller effects underlie variation in aerobic performance, whereas fewer
variants of larger effects underlie variation in predatory behavior. Our results thus contradict the view that comparable
selection pressures for different quantitative traits produce similar molecular patterns. Therefore, to gain knowledge
about molecular-level response to selection for complex traits, we need to investigate not only multiple replicate pop-
ulations but also multiple quantitative traits.
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Introduction

Genetic basis of adaptive evolutionary change has intrigued
researchers for decades (Lewontin 1974; Radwan and Babik
2012), but general patterns of response to selection, especially
in sexually reproducing species, are poorly understood. It has
recently been proposed that, as a remedy, two strategies—
identification of the loci that contribute to variation in traits
influencing fitness and examination of the trajectories of poly-
morphisms during adaptation—should be combined in the
evolve and resequence approach (Turner et al. 2011; Kofler
and Schlötterer 2014). In evolve and resequence studies, ex-
perimental evolution is combined with high throughput se-
quencing to identify the genotype–phenotype link, to test the
role of selection in shaping genetic variation, and to study
evolution in real time (Garland and Rose 2009; Kawecki et al.
2012; Schlötterer et al. 2015). In our previous work, we used
this strategy to investigate initial molecular-level response to

selection for high aerobic capacity in bank voles (Myodes
[¼Clethrionomys] glareolus) (Konczal et al. 2015). Studying
four independent replicates in both the selected and unse-
lected groups (line types) allowed an effective control for the
effects of drift, but similarly to other selection experiments,
our conclusions were based on analyses of a single phenotype.
The bank voles selected for high aerobic capacity are, how-
ever, a part of larger project—a laboratory model of adaptive
radiation (Sadowska et al. 2008)—including also lines selected
for other ecologically important traits. It is thus worthwhile to
ask whether directional selection imposed under identical
conditions on different quantitative traits will produce similar
patterns at the genomic level.

Experimental studies showed that evolution can be rapid:
significant changes in phenotype have been observed for
many species after only several generations (Garland and
Rose 2009; Johansson et al. 2010; Orozco-terWengel et al.
2012). Trajectories of selected variants are, however, complex.
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Instead of going to fixation, variants may sometimes stabilize
at intermediate frequencies, which reduces power to distin-
guish them from variants affected mainly by drift (Burke et al.
2010; Orozco-terWengel et al. 2012). General patterns of re-
sponse to selection, such as repeatability of allele frequency
changes, magnitude of change, number of loci under selec-
tion, or proportion of adaptive changes in regulatory se-
quences remain still a matter of uncertainty.

The patterns of response to selection depend on popu-
lation size and selection protocol, but it is less clear whether
they vary depending on the trait under selection. The avail-
able evidence from flies, mice, and humans (Flint and
Mackay 2009) suggests that most quantitative, fitness-
related traits have complex genetic basis, with large number
of loci of small effect underlying their variation. Flint and
Mackay (2009) argued that the distributions of effect sizes of
common variants for most phenotypes and species are sim-
ilar, and discrepancies can be explained by differences in
experimental design. This uniform genetic architecture
would imply that selection for various quantitative traits
performed under identical conditions starting from the
same base population should produce similar patterns at
the genomic level (i.e., number of responding genes, magni-
tude of allele frequency changes, repeatability at the molec-
ular level). On the other hand, theory suggests that genetic
architecture underlying quantitative traits should evolve
and differ between phenotypes (Hansen 2006; Rajon and
Plotkin 2013; Remington 2015). For example, a theoretical
model proposed by Rajon and Plotkin (2013) predicts that
traits under moderate selection pressure should be encoded
by many genes, whereas traits under either weak or strong
selection should be encoded by relatively few genes. Some
light may be shed on this controversy by answering the

empirical question whether directional selection imposed
under identical conditions on different quantitative traits
will produce similar patterns at the genomic level.

To study general patterns of molecular-level response to
selection for quantitative traits, we performed transcriptomic
analyses on animals from a unique laboratory model of mam-
malian adaptive radiation (fig. 1; Sadowska et al. 2008): 12
lines derived from a natural, outbred population of a wild
rodent, the bank vole (Myodes [¼Clethrionomys] glareolus).
Four independent lines were selected for increased predatory
behavior (time to catch a cricket; P/predatory lines), four for
high aerobic exercise metabolism (1-minute maximum rate
of oxygen consumption achieved during swimming; A/aero-
bic lines), and four were not intentionally selected (C/control
lines). We sequenced pooled RNA samples (pooled RNA-Seq;
Konczal et al. 2014) to compare both gene expression and
allele frequencies in transcribed parts of the genome (De Wit
et al. 2015). In our previous work, we reported the results for a
comparison of the aerobic and control lines (Konczal et al.
2015). The main aims of this work were to 1) investigate the
transcriptome-wide response to the selection for predatory
behavior, and 2) compare it with the response to selection for
high aerobic metabolism.

Predation is an ecological factor of almost universal impor-
tance for regulating ecosystems and sustaining biodiversity
(Curio 1976; Ritchie and Johnson 2009; Ishii and Shimada
2010; Ritchie et al. 2012) and has serious consequences for
survival and reproductive success (Curio 1976). Yet, little is
known about potential of species to evolve predatory behav-
ior, not to mention its genetic basis. According to our knowl-
edge, only one other experiment focused on response to
artificial selection for predatory behavior (Polsky 1978), and
only few others concerned predatory behavior in rodents as a

FIG. 1. Phenotypic response to selection in the experiment (mean values for replicate lines). Four independent lines were selected for increased
predatory behavior (triangles), four lines were selected for high aerobic exercise metabolism (diamonds; the selection was relaxed in generation 12),
and four lines were maintained as controls (circles). (Cartoon drawings by January Weiner, adapted from Sadowska et al. 2008.)
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possible correlated response to selection for other forms of
aggression (Sandnabba 1995) or high wheel-running activity
(Gammie et al. 2003), or in insects in response to divergent
selection for developmental rate (Siddiqui et al. 2015) or to
laboratory natural selection driven by low quality food
(Vijendravarma et al. 2013). The potential to evolve predatory
behavior may be, however, substantial itself if genes involved
in interindividual aggressive behaviors can be co-opted to
produce predatory aggression. Identification of ‘predation
genes’ may shed light on the possibility of shared genetic basis
of intra- and interspecific aggression. At the neuronal level,
predatory behavior is recognized by higher aggression, mini-
mal arousal, and limited social communication (Tulogdi et al.
2015). Hippocampus, as associated with many of these attrib-
utes, is studied here by transcriptomic analyses.

In most evolve and resequence studies, researchers focus
on a single phenotype, which is selected in replicate popula-
tions (Swallow et al. 1998; Burke et al. 2010; Turner et al. 2011;
Orozco-terWengel et al. 2012). Identical conditions and ex-
perimental setup allow us to compare response to selection
between two quantitative traits—aerobic exercise perfor-
mance and predatory behavior—in liver transcriptomes. In
the lines selected for aerobic capacity, response occurs
through changes in expression of many genes, but no evi-
dence for repeatable changes of allele frequencies in tran-
scribed regions was found (Konczal et al. 2015). However,
this pattern of response to selection is primarily driven by
changes in regulatory sequences and lack of repeatable allele
frequencies shifts may not be universal for all traits. By com-
paring genetic response to selection on various traits within
the same experiment, we control for biases, which could be
associated with different methodologies, genetic composition
of selected populations, population sizes, or selection regimes.

Results

Transcriptome Assembly and Annotation
We used 80.2 million (M) of paired-end reads (2 � 100 bp)
from one control line (C3) to reconstruct the hippocampus
transcriptome. De novo assembly resulted in 219,886 tran-
scripts, which were then reduced to 153,677 transcriptome-
based gene models (putative isoforms were merged into a
single consensus sequence and referred to as contigs; table 1).
Of these 28,743 were identified as putatively protein coding,
and 21,407 (74.5%) were successfully annotated to 13,305
known genes using SwissProt, showing that some genes
were fragmented in the transcriptome assembly.

For the remaining seven lines (three C lines and four P
lines), we obtained altogether 250 M of 100-bp single-end
reads from hippocampus transcriptomes (35.6 M 6 [SD]
15.3 M per sample). These reads, together with subsampled
sequences from the C3 line (35 M single-end reads) were used
to compare hippocampus transcriptomes between the se-
lected and control lines.

For analyses of liver transcriptomes, we used the previously
published liver reference transcriptome (Konczal et al. 2014).
We sequenced liver transcriptomes of P lines (127 M single-
end 100 bp reads, 31.9 M 6 [SD] 3.7 per sample) and

compared them with transcriptomes of control lines from
the same generation of the selection experiment (Konczal
et al. 2015).

Polymorphism
Using reads from the liver and hippocampus, we identified
179,468 single-nucleotide polymorphisms (SNPs), which
were grouped into four classes: nonsynonymous, synony-
mous, UTR-located, and noncoding (table 2). The SNPs
were localized in 15,580 contigs, 11,076 of which were pu-
tatively protein coding. In accordance with expectations,
allele frequency spectra differed between SNP classes.
Spectrum of nonsynonymous variants was the most
skewed, indicating purifying selection (supplementary fig.
S1, table S1, Supplementary Material online). To test the
effects of selection and effective population size (Ne, calcu-
lated from pedigree ranged from 51 to 74, supplementary
fig. S2, Supplementary Material online) on variation within
lines we counted the number of polymorphic sites (minor
allele frequency> 0.05) within each line. Polymorphism was
affected by Ne (generalized linear-mixed model [GLMM],
F(1,6)¼9.9, P¼ 0.02), while the effect of treatment (C vs.
P) was not significant (GLMM, F(1,6)¼1.6, P¼ 0.25).

Repeatability of Allele Frequency Changes in
Predatory and Aerobic Lines
To test whether selection resulted in repeatable changes of
allele frequencies, we investigated pairwise FST distances be-
tween predatory and control lines for all SNPs. Ordination of
the pairwise FST matrix did not reveal clustering of selected
and control lines (P¼ 0.20; permutation test; supplementary
fig. S3, Supplementary Material online), similarly as in the
case of the previous comparison between aerobic and con-
trol lines (P¼ 0.64; permutation test; supplementary fig. S3,
Supplementary Material online), although the difference be-
tween predatory and control lines appears to be higher than

Table 1. Basic Statistics of the Hippocampus Reference Transcriptome.

No. of contigs 153,677
No. of contigs >1 kb 29,267
N50 contig length (bp) 1,598
No. of contigs within N50 18,518
No. of putative protein coding contigs 28,743
Total length (Mb) 122

NOTE.—contigs (transcriptome-based gene models) contain both coding and non-
coding sequences;
N50, 50% of the assembly length is in contigs of the length of N50 bp or longer.

Table 2. Number of SNPs Identified in the Liver and Hippocampus
Transcriptomes of Bank Voles Derived from Predatory and Control
Lines.

No. of SNPs 179,468
No. of contigs with SNPs 15,580
No. of nonsynonymous SNPs 21,708
No. of synonymous SNPs 44,102
No. of UTR-located SNPs 82,422
No. of SNPs in noncoding contigs 31,236
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that between aerobic and control ones. However, when we
sampled 500 SNPs with the highest mean pairwise FST (i.e.,
showing the highest overall differentiation), the clustering
was not observed for aerobic lines (fig. 2A; P¼ 0.61; permu-
tation test), whereas the predatory lines clustered apart from
controls (fig. 2B; P¼ 0.06; permutation test).

We further tested whether the number of SNPs differentiat-
ing predatory lines from controls exceeded neutral expectations
obtained from pedigree-based simulations. To this end, we in-
vestigated SNPs with allele frequencies nonoverlapping between
predatory and control lines (3,715 SNPs, 2.07% of all SNPs, lo-
cated in 2,050 contigs). Within this set of differentiated SNPs, 419
were nonsynonymous (1.93% of all nonsynonymous SNPs, in
338 contigs), 965 (2.19%, in 696 contigs) synonymous, 1,682
(2.04%, in 962 contigs) UTR-located, and 649 (2.08%, in 407
contigs) noncoding. The observed number of differentiated
SNPs was significantly higher than expected (P¼ 0.02).
In separate tests for various SNP classes, the excess of differenti-
ated SNPs was found for synonymous polymorphisms
(P¼ 0.01), while the number of differentiated nonsynonymous
(P¼ 0.52), UTR-located (P¼ 0.16) and noncoding (P¼ 0.25)
SNPs did not depart from neutral expectations. This result again
differs from that for aerobic lines, in which the number of differ-
entiated SNPs did not exceed drift expectations either for all
SNPs or for any particular class (Konczal et al. 2015). However,
in both cases the relatively small population sizes result in low
population recombination rate, which may cause entire long
haplotypes to drift. To control for the effect of linkage, additional
analyses were performed.

For each contig, variation in the base population was esti-
mated using polymorphism data from control lines corrected

for the loss of variation during the experiment. A set of hap-
lotypes in the base population was then obtained using coa-
lescent simulations (see Materials and Methods). These
haplotypes were used for pedigree-based simulations to esti-
mate the expected number of differentiated SNPs. Also this
analysis confirmed an excess of differentiated SNPs in predatory
lines, whereas for aerobic lines the observed and simulated data
did not differ (table 3). The excess of differentiation in the
predatory lines was observed mostly in synonymous and
UTR-located SNPs (table 4).

Candidate Loci for Predatory Behavior
To identify loci most differentiated between predatory and
control lines, we applied two strategies based on differences
in allele frequencies or differences in read counts. First, we
sorted SNPs with nonoverlapping allele frequencies according
to their diffStat value (Turner et al. 2011). DiffStat is the differ-
ence in allele frequency between a selected line with the high-
est frequency and a control line with the lowest (or vice versa).
To select the loci most differentiated between treatments, we
considered SNPs with diffStat> 0.2 (94 SNPs; probability of
obtaining such diffStat by chance in pedigree based

FIG. 2. Genetic differentiation of (A) aerobic-selected (diamonds) versus control lines (circles) and (B) predatory-selected (triangles) versus control
lines, in the bank vole selection experiment. Multidimensional scaling (MDS) was performed on the matrices of pairwise FST distances between
lines calculated for top 500 SNPs with the highest mean pairwise FST, that is, showing the most overall differentiation among lines (separately for
the two comparisons).

Table 4. Number of Differentiated SNPs in Predatory Lines Grouped
According to the SNP Class.

SNP type Observed Expected

Nonsynonymous 380 296–395
Synonymous 849 634–780
UTR 1527 1196–1430
Noncoding 586 439–593

Table 3. Number of SNPs with Nonoverlapping Allele Frequencies (Differentiated SNPs) between Selected Lines and Controls.

Predatory Lines Aerobic Lines

Observed Expected Observed Expected

No of differentiated SNPs 3,342 2,565–3,198 2,882 2,349–3,009
No of SNPs 163,646 164,400–168,720 156,452 154,760–159,120
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simulations< 4.5� 10�4). For this group, we carried out man-
ual verification and investigation of their molecular functions.
The full list of these genes is provided in supplementary table
S2 (Supplementary Material online). Second, following the
strategy applied by Jha et al. (2015), we used GLMM to com-
pare allele frequency differentiation between predatory and
control lines. To do so, for each SNP we compared the num-
ber of sequencing reads with reference and alternative var-
iants between treatments. We narrowed down the list to 114
SNPs with P value< 10�10 (probability of obtaining such P
value by chance in simulations< 5.98 � 10� 4) and listed
these SNPs in supplementary table S3 (Supplementary
Material online).

Results of both analyses were consistent, showing a signif-
icant overrepresentation of SNPs with allele frequencies
highly differentiated between treatments, although in both
cases false discovery rate (FDR) assessed by simulations was
substantial (0.86 and 0.94, respectively). Nevertheless, SNPs
detected by both approaches (38 SNPs; FDR¼ 0.69) are the
strongest candidates for being targets of selection and some
genes harboring such SNPs are discussed below (supplemen
tary table S4, Supplementary Material online).

Changes in Gene Expression
To determine differences in gene expression between predatory
and control lines, we mapped reads from the liver and hippo-
campus to the respective transcriptomes, and compared expres-
sion between the P and C lines. Multidimensional scaling
separated selected lines from controls for the hippocampus
(P¼ 0.012) but not for the liver (P¼ 0.286). The same pattern
was observed in analyses limited to 500 contigs with expression
most differentiated among all samples (hippocampus: P¼ 0.016;
liver: P¼ 0.289, fig. 3). On the other hand, the number of contigs
with statistically significant differences in expression between the
P and C lines (FDR< 0.05) was higher in the liver (90; 0.10% of all
contigs expressed in liver) than in the hippocampus (59; 0.04%
of expressed hippocampus contigs) (v2¼29.8, P< 0.001; supple
mentary tables S5 and S6, Supplementary Material online).

Candidate loci potentially associated with predatory behavior
are described in Discussion section.

Discussion

Molecular Basis of Variation in Predatory Behavior
We employed the evolve and resequence approach to pro-
vide the first genome-wide dataset on genetic variation asso-
ciated with predatory behavior in a mammalian species. The
analysis revealed both highly differentiated allele frequencies
in transcribed portions of the genome and differences in ex-
pression of several genes, which function suggests plausible
role in the increased predatory behavior (supplementary ta
bles S4–S6, Supplementary Material online).

The two SNPs with the highest differences (diffStat values
0.47) and with the same allele fixed in all predatory lines were
localized next to each other in a noncoding transcript, which
was manually annotated as 3’UTR region of cAMP-specific
3’,5’-cyclic phosphodiesterase 4D gene (PDE4D). PDE4D is one
of four known cAMP-specific genes in the mammalian ge-
nome, expressed in the cerebellum, thalamus, habenula, hip-
pocampus, and cerebral cortex (Iona et al. 1998; Zhang et al.
1999). Inhibition of PDE4D produces antidepressant-like ef-
fects in both animals and humans via reduction of cAMP
signaling in the brain (Zhang 2009). Interestingly, Wang
et al. (2015) found an association between presence of
PDE4D isoforms and changes in behavioral tests in mice.
They reported 85.9% increase of the latency to feed in the
Novelty-Suppressed Feeding test after the chronic unpredict-
able stress procedure. This tendency (together with other
behaviors specific for animal models of depression) was, how-
ever, reversed, if long isoforms of PDE4D gene were blocked.
Although hippocampal expression of PDE4D did not differ
between P and C lines, these results might suggest that
changes in alternative splicing of PDE4D played an important
role in response to selection for predatory behavior.

Another intriguing example is presented by the contig
over-expressed in the predators’ hippocampus that en-
codes 3’UTR of gamma-aminobutyric acid B receptor 1
(GABBR1). Interestingly, SNP with one of the highest

FIG. 3. Expression differentiation in liver (A) and hippocampus (B) samples from predatory (triangles) versus control (circles) lines of the bank vole
selection experiment. Multidimensional scaling plots were drawn from top 500 contigs with the largest variation in expression, treating all lines as
one group.
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diffStat values is localized in gene that encodes pyridoxine-
5’-phosphate oxidase. This gene catalyzes the rate-limiting
step in the synthesis of pyridoxal 5’-phosphate, an impor-
tant cofactor in biosynthesis of many neurotransmitters
including dopamine, serotonin, and gamma-aminobutyric
acid (GABA). Imbalance between glutamatergic and
GABAergic activity leads to the hyperactivity of the limbic
regions and aggressive behavior (for review see Siever 2008).
GABA is the main inhibitory neurotransmitter in the cen-
tral nervous system, acting through ionotropic GABAA and
metabotropic GABAB receptors. The latter is responsible for
the neuronal activity modulation, synaptic plasticity, and
neurogenesis (Pinard et al. 2010; Hensler et al. 2012). It was
shown that GABA signaling through GABAB1 receptors in-
hibits proliferation in the hippocampus and reduces neuro-
genesis (Giachino et al. 2014). We thus suspect that changes
associated with GABAergic signaling may be responsible for
the evolution of predatory behavior. It is also worth to
mention that both serotoninergic and dopaminergic sys-
tems regulate arousal, mood, attention, and cognitive func-
tions, thus changes in their activations may be associated
with aggressive disorders (Kudryavtseva 2000).

The analysis revealed also several other highly differenti-
ated genes encoding proteins involved in functions of the
central nervous system, such as proline dehydrogenase 1
(PRODH; the highest P value in GLMM test), associated
with cognitive dysfunctions in humans (Kempf et al. 2008),
Phospholipase A2 (PLA2), linked to schizophrenia and
autism (Bell et al. 2004), or CB1 cannabinoid receptor-
interacting protein 1 (CNRIP1), involved in the mechanism
of reward-related eating (Harrold et al. 2002; Guggenhuber
et al. 2010).

Expression of testosterone 17-beta-dehydrogenase 3
(HSD17B3), a gene encoding the enzyme involved in the re-
duction of androstenedione to testosterone, was increased in
livers of P-line voles. Increased testosterone level results in
increased intraspecific aggression (Nelson and Chiavegatto
2001), and the question whether intraspecific aggression
shares a partly common control mechanism with the inter-
specific predatory aggression is subject to debate (Sandnabba
1995; Weinshenker and Siegel 2002). Upregulated expression
of a few other genes in liver indicates that the increased
readiness of P voles to attack and eat the crickets could be
due to increased sensitivity to hunger: both G0/G1 switch
gene 2 (G0S2) and protein phosphatase 1 regulatory subunit
3G (PPP1R3G) were reported to be upregulated during fasting
(Zandbergen et al. 2005; Luo et al. 2011), whereas leptin re-
ceptor is involved in the main regulatory mechanism of feed-
ing and energy balance (e.g., Ahima and Flier 2000; Otte et al.
2004). Finally, differentiated expression of aryl hydrocarbon
receptor nuclear translocator 2 (ARNT2) in the liver, and dif-
ferentiated allele frequencies in delta-aminolevulinate syn-
thase 1 (ALAS1) intron SNPs, indicate plausible changes in
the general activity and circadian rhythm pattern, which
could contribute do difference in predatory behavior ob-
served at a particular time of day.

Overall, the selection experiment showed considerable ge-
netic potential for evolution of predatory behavior in the

bank vole, which was here related to genes differentiated
between predatory and control lines. All the genes presented
briefly above are interesting targets for future research not
only in the context of possible role in evolution of predatory
aggression but also using the selected lines of voles as pro-
spective models of mental and metabolic disorders.

Patterns of Response to Selection for Quantitative
Traits
In this study, we used replicate lines derived from a natural
population of an omnivore rodent to experimentally quantify
molecular level response to selection for predatory behavior
and to compare it with response to selection for aerobic
capacity. In case of both traits, the overall pattern of gene
expression separated selected lines from controls, but expres-
sion of twice as many contigs was differentiated in aerobic as
in predatory lines.

Differentiation of allele frequencies between selected and
control lines exceeded neutral expectations for predatory but
not for aerobic lines. This conclusion is supported by two
findings in predatory lines: 1) separate clustering of predatory
lines based on pairwise FST and 2) an excess of SNPs with
repeatable allele frequency differences compared to neutral
expectations obtained by pedigree-based simulations.
Interestingly, in predatory lines, regardless of the simulation
method (independent SNPs vs. entire haplotypes) an excess of
differentiated SNPs was found among synonymous polymor-
phisms, but we did not observe higher than expected differ-
entiation at nonsynonymous sites. This might be associated
with high false discovery rate but might also suggest that
changes other than amino acid substitutions dominate in
evolution of predatory lines. The second hypothesis is sup-
ported by the trend observed in genes containing candidate
SNPs with highly differentiated allele frequencies. Such genes
selected by either diffStat or GLMM approach tend to show
higher differences in expression between predatory and con-
trol lines than other genes. This trend is visible both in the
comparison of the nominal P values (P¼ 0.10 and P¼ 0.005
for diffStat and GLMM, respectively; Mann–Whitney U test;
supplementary figs. S4 and S5 and tables S3 and S4,
Supplementary Material online) and in the expression fold
change (P¼ 0.07, P¼ 0.08 for diffStat and GLMM, respec-
tively; Mann–Whitney U test; supplementary figs. S6 and S7,
Supplementary Material online). We thus argue that, as in the
case of previously reported results for aerobic lines, the re-
sponse to selection for predatory behavior occurs mostly via
changes in gene expression. (Konczal et al. 2015). On the other
hand, repeatable changes at synonymous and UTR-located
sites (the latter supported only by comparison with simulated
haplotypes)—potentially associated with regulation of gene
expression, alternative splicing, and mRNA stability
(Kuersten and Goodwin 2003; Chamary et al. 2006; Plotkin
and Kudla 2011) were observed for predatory but not for
aerobic lines. This difference suggests that selection for various
quantitative traits conducted under the same conditions can
produce different genomic patterns. Below we discuss poten-
tial causes and consequences of this observation.
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Nature of genome-level response to selection may depend
on several factors: amount of standing genetic variation, ef-
fective population size, selection pressure, or genetic architec-
ture of selected trait (Kofler and Schlötterer 2014; Kessner and
Novembre 2015). In our experiment, most of these factors did
not differ between lines selected for aerobic metabolism and
those selected for predatory behavior. All lines were derived
from the same base population (Sadowska et al. 2008), thus
voles share both population history before the onset of se-
lection and the pool of standing genetic variation. Effective
population sizes do not differ between aerobic and predatory
lines (P¼ 0.51, t-test). Selection regimes are comparable be-
tween treatments as is response to selection at the pheno-
typic level (fig. 1; Chrzascik et al. 2014; Sadowska et al. 2015).
All lines are kept in the same laboratory under identical stan-
dard conditions, so domestication, if occurs, should affect
them in a similar way (Sadowska et al. 2015). Finally, the
same methodology was applied: number of individuals se-
quenced, data filtering and quality control, transcriptome
reconstruction, SNP calling, and allele frequency estimation
were all identical for predatory, aerobic, and control lines
(Sadowska et al. 2008; Konczal et al. 2015). Therefore, in our
opinion, the most likely explanation for the observed differ-
ence between predatory and aerobic lines is the difference in
genetic architectures between selected traits.

Genetic architecture refers to the pattern of genetic effects
that build and control a given phenotypic character and its
variation properties (Hansen 2006). Full characterization of
genetic architecture requires information about the number
of genes and alleles, the distribution of allelic and mutational
effects, the distribution of allele frequencies in population,
and patterns of pleiotropy, dominance, and epistasis
(Mackay 2001). Such full characterization remains beyond
reach for quantitative traits in any system. However, our re-
sults provide insight into some aspects of differences in ge-
netic architecture between traits.

The probability of obtaining differentiated allele frequen-
cies between selected and control lines depends on the
strength of selection acting on particular variants. Weakly
selected SNPs will have less differentiated allele frequencies
than SNPs strongly influencing the trait under selection. If
many variants, each of small effect, underlie aerobic perfor-
mance, dynamics of allele frequency changes will be domi-
nated by stochastic processes. Hence, we would not observe
repeatable allele frequency changes, despite repeatable evolu-
tion of phenotypes. More complex genetic architecture in
terms of the number of genes involved is also capable of
generating greater correlated responses through pleiotropy
(Falconer and Mackay 1996). Higher number of differentially
expressed genes in aerobic lines compared to predatory lines is
consistent with this scenario. Thus, the difference in the num-
ber of genes responding to selection probably contributes to
the observed difference between predatory and aerobic lines.

The contrast between aerobic and predatory lines could in
principle result from differences in initial frequencies of se-
lected variants (Konczal et al. 2015) or differences in frequen-
cies of variants that form epistatic interactions with selected
variants (Flint and Mackay 2009; Mackay 2014). In both cases,

variants of large effect might have been selected in aerobic
lines, but different SNPs responded in different replicated
lines. Yet another scenario might explain the observed pat-
tern: large effect variants in nontranscribed part of genome
are selected in aerobic lines but could not be detected with
transcriptomic surveys. While these effects cannot be tested
with our data and thus we cannot exclude their contribution
to the differences between aerobic and predatory lines, future
work on the genome scale is required to confirm the findings
presented here. However, neither of the alternative hypothe-
ses explains the higher number of differentially expressed
genes in aerobic lines, so currently the most likely explanation
is that a smaller number of larger effect variants underlie
variation in predatory behavior, whereas a larger number of
smaller effect variants affect aerobic performance.

The distribution of effect sizes of common variants appears
similar for most quantitative traits and the model of large
number of loci, each of small effect was postulated as an
adequate description of genetic variation in fitness-related
traits (Flint and Mackay 2009). According to this model, re-
sponse to selection for various quantitative traits should gen-
erate similar genomic patterns. Our results, however, suggest
differences in distribution of effect sizes between traits suffi-
cient to produce dissimilar patters of response to selection at
the molecular level. This result is in line with suggestions that
genetic architectures may differ between complex traits
(Hansen 2006). For instance, some theoretical studies showed
that genetic architecture should evolve according to selection
pressure acting on a trait (Hansen 2006; Rajon and Plotkin
2013).

As we demonstrated here, evolve and resequence ap-
proach performed on selection lines derived from a natural
population can reveal differences in genetic architecture of
different traits. We caution, however, against an excessive
optimism and unrealistic expectations—the statistical power
to detect loci under selection is relatively low and strongly
depends on effective population size, number of replicates,
and genetic architecture of selected traits (Kofler and
Schlötterer 2014). Various types of analytical approaches dif-
fer also in power and may result in very high rates of false
positives. For example, the diffStat statistic is not sensitive to
differences in coverage across loci and thus may produce
many false positives in low expressed transcripts (Turner
et al. 2011; Kofler and Schlötterer 2014). An alternative
method (GLMM on read counts) may result in excess of false
positives because coverage for many genes is much higher
than the number of chromosomes sampled from a popula-
tion. Yet another problem—high overdispersion of allele fre-
quencies resulting from multiple generations of drift—may
rend the standard distributions used for hypothesis testing
too narrow (i.e., if distributions derived from drift simulations
are not applied). Indeed, we found a large overrepresentation
of SNPs with differentiated allele frequencies (supplementary
fig. S8, Supplementary Material online) when the false discov-
ery rate was calculated with the standard method (q value).
However, when we compared these results with simulated
data, this high overrepresentation of SNPs differentiated be-
tween treatments was strongly reduced. Thus, in our opinion
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drawing general conclusions about the molecular basis of
adaptive evolutionary change from selection experiments
might be difficult, especially when the population sizes and
numbers of replicates are small. Such experiments can, how-
ever, constitute an important step in understanding genomic
basis of variation in traits of interest, especially when multiple
populations show repeatable genomic response to selection.
Selection experiments also shed light on the longstanding
questions concerning genomics of complex traits, such as
those about differences in genetic architecture of different
traits, as addressing them does not necessarily depend on
the identification of specific genes.

Materials and Methods

Selection Experiment
This study was performed using individuals from the 13th
generation of the bank vole (Myodes (¼Clethrionomys) glar-
eolus) selection experiment. Samples sequenced for this study
were obtained from control lines and from lines selected for
predatory behavior. The additional analyses were performed
on previously reported data for lines selected for aerobic per-
formance (Konczal et al. 2015). Detailed information about
the animal maintenance and welfare, selection protocols, and
direct effects of selection are presented elsewhere (Sadowska
et al. 2008, 2015; Babik et al. 2010; Chrzascik et al. 2014;
Stawski et al. 2015). Briefly, the colony was established from
about 320 voles captured in the Niepołomice Forest in
southern Poland (Sadowska et al. 2008). For six to seven
generations, the animals were bred randomly, and then multi-
dimensional selection experiment was established. In P lines
analyzed here (four independent lines), the selection criterion
was a time to catch a live cricket (Gryllus assimilis), according
to the protocol of the predatory test (Polsky 1978; Gammie
et al. 2003). The voles were fasten for 10–12 h, next crickets
were placed in each cage and their presence was verified after
0.5, 1, 3, 6, and 10 min. The results were scored as ranks (1–5:
cricket caught in 0.5, 1, 3, 6, or 10 min, respectively; rank 6:
cricket not caught). Tests were repeated two to four times
(mostly four) for each individual, depending on generation
and human resources. After 13 generations of selection, the
proportion of voles attacking crickets was five times higher
in the selected P lines than in unselected control C lines (fig.
1; Sadowska et al. 2015). The main difference is that about
80% of voles from the unselected C lines do not attack the
cricket at all in any of the replicated trials whereas about
70% of voles from the P-selected lines attack the cricket
already in the first trial. Thus, the major difference appears
already in the first trial, which is also the first contact with a
cricket in the vole’s life. In the A lines, the selection criterion
was the maximum mass-independent 1-min rate of oxygen
consumption achieved during 18 min swimming (Konczal
et al. 2015). After 13 generations of selection swim-induced
maximum rate of oxygen consumption was 48% higher in
aerobic lines than in C lines (fig. 1).

It could be argued that the difference in the selected trait
between the P and C lines resulted not from increased mo-
tivation or ability to catch a live prey (predatory behavior per

se) but from increased motivation to get any food (i.e., the
increased sensitivity to hunger). To test for this possibility, we
performed behavioral trials designed in the same way as the
predatory trials, except that the animals received a small pel-
let of standard food rather than a cricket. The tests were
performed on 32 P-line voles and 32 C-line voles (eight
from each of the four P-lines and four C- lines) from gener-
ation 21. Unlike in the trials with crickets, all individuals
started to eat the food pellet after it was offered, and most
of them did it nearly instantly, within 30 s. The latency was
slightly longer in the control lines, but the difference was
small. In the first trial, performed after 6 h of fasting, in C lines
27 voles took the pellet within 30 s, 1 within 1 min, and 4
within 3 min, whereas in P lines 29 within 30 s, 2 within 3 min,
and 1 within 6 min. In the second trial, performed on the
same animals after additional 3 h of fasting, in C lines 26 voles
took the pellet after 30 s, 3 within 1 min, 1 within 3 min, and 1
within 10 min, whereas in P lines all individuals took the pellet
within 30 s. Thus, a selection for an increased motivation to
take any kind of food (sensitivity to hunger) may partly ex-
plain the observation that P-line voles attack the cricket faster
than those from C lines but not the observation that most of
C-line voles do not attack the cricket at all, whereas most of P-
line voles do that.

All the breeding and experimental protocols have been
approved by the Polish State and Local Ethical Committee
for Ethics in Animal Research in Krakow (decisions No. 99/
2006, 21/2010 and 22/2010).

P versus C Lines comparison—Sampling, Sequencing,
and Quality Control
Five females and five males of 75–80 days in age were sampled
from each of eight lines; each individual came from a different
family. The individuals were previously used only for routine
body mass measurements. Voles were euthanized by being
placed individually in a jar containing isofulrane (Aerane)
fumes. Small part of the left liver lobe and entire hippocam-
pus were excised and immediately placed in RNAlater (Sigma-
Aldrich). Tissues were collected between 8.00 AM and
2.00 PM. Samples were stored overnight at 4 �C and then
frozen at –20 �C.

We analyzed here the hippocampus and liver transcrip-
tomes to understand genetic basis of pedatory behavior. The
studied behavior is likely controlled by the limbic system
consisting of the prefrontal cortex, amygdala, hypothalamus,
and hippocampus. The interaction between the amygdala
and the hippocampus coordinates the emotional and
reward-related modulation of behavior (Terada et al. 2013).
Moreover, the hippocampus was shown to be engaged in
episodic memory processing and spatial learning (for review
see Bannerman et al. 2014), as well as involved in feeding-
related (Tracy et al. 2001) and goal-directed (Kennedy and
Shapiro 2009) behaviors. In the light of above facts, we have
chosen the hippocampus as the candidate organ in which
many genetic changes may occur.

Liver transcriptomes were analyzed because many genes
expressed in this organ provide information about allele
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frequency changes in genes which are not expressed in the
hippocampus. Moreover, if evolution of predatory behavior is
accompanied by changes in overall physiology (e.g., hunger
level, metabolism, or stress) then gene expression changes
may also occur in the liver.

Total RNA was extracted with RNAzol (Molecular
Research Center); RNA concentration and quality were mea-
sured with Nanodrop and Agilent 2100 Bioanalyzer. All sam-
ples had RNA Integrity Number higher than 7.0. Then, for
each organ, we prepared one pooled sample per line using
equal amounts of total RNA from each individual. Residual
DNA was removed from pooled samples using DNA-free Kit
(Ambion).

Preparation of barcoded cDNA libraries with TrueSeq RNA
kit was performed by Georgia Genomic Facility, USA.
Hippocampus sample from one control line (C3) was
paired-end sequenced (2 � 100 bp) and used for reference
transcriptome reconstruction. For the remaining seven pools,
single-end (1 � 100 bp) sequencing was performed. Four
pools of liver transcriptomes predatory lines were also
single-end sequenced (1� 100 bp) and compared with pre-
viously reported liver samples from control lines (Konczal
et al. 2015).

Hippocampus Reference Transcriptome
Reconstruction and Annotation
Pair-end reads were trimmed with DynamicTrim (Cox and
Peterson 2010) and used for de novo hippocampus transcrip-
tome assembly with Trinity (version 2013-02-15 with –
REDUCE option; Grabherr et al. 2011). We then processed
the Trinity output by merging transcripts that were probably
derived from the same genomic location and subsequently
produced transcriptome-based gene models, which we refer
to as “contigs” (Stuglik et al. 2014).

Putative coding sequences were identified using the pipe-
line distributed with Trinity and annotated using Trinotate
software and homology search to the Swissprot database. For
candidate contigs that could not be annotated automatically,
we attempted manual annotation using blastn searches
against the mouse genome. We found that many of these
sequences represent 3’-untranslated regions (3’UTRs) or re-
gions immediately downstream of genes, probably extended
3’UTRs in bank voles or unannotated transcribed regions in
mouse (supplementary table S1, Supplementary Material on-
line). Existing assembly strategies often fragment long 3’UTRs
(Shenker et al. 2015) and some 3’UTRs may be transcribed
separately from the associated protein coding sequences
(Mercer et al. 2011). Allele frequency changes in such se-
quences may be caused by either linkage to causative variants
in noncoding regions (coding nonsynonymous changes were
investigated) or may be functionally important per se. The
3’UTRs and downstream sequences affect the expression of
eukaryotic genes by regulation of mRNA translation, stability,
and subcellular localization (Kuersten and Goodwin 2003).

SNP Analyses
Single-end reads were trimmed with DynamicTrim (Cox
2010) and adaptors were removed with Cutadapt (Martin

2011). We subsampled also single-end reads from pair-end
reads, to obtain comparable amount of data for all lines and
organs. Reads were mapped to the reference transcriptomes
using Bowtie2 (Langmead and Salzberg 2012) and we consid-
ered only reads with mapping quality> 20 and positions with
base quality> 20 phred. SNP calling was performed with
samtools (Li et al. 2009), Popoolation2 (Kofler et al. 2011),
and custom scripts as described in detail elsewhere (Konczal
et al. 2015). Genome-wide FST estimates were calculated from
average number of pairwise differences between and within
population across all analyzed SNPs with custom scripts. To
select most differentiated SNPs, FST distances were calculated
for each SNP with PoPoolation2 and SNPs with the largest
average distance were subjected for downstream analyses. To
test for separate clustering of selected and control lines, we
calculated the ratio of between treatment to within treat-
ment variance using R package vegan (Oksanen et al. 2013).

Candidate SNPs were identified by two approaches. First,
similar to the analyses presented for voles selected for aerobic
capacity (Konczal et al. 2015), we calculated minimum abso-
lute difference in allele frequency between the predatory and
control lines, as the diffStat score (Turner et al. 2011). To
narrow down the list, we selected SNPs with diffStat> 0.2.
Additionally, we applied generalized linear-mixed model
GLMM, similar to approach presented by Jha et al. (2015).
We used R package lme4, and reads counts (reference¼ 0,
variant¼ 1) were used as an outcome variable. To avoid
technical problems during calculations, zero read counts
were changed to one, which should not significantly affect
results. The list of candidate SNPs was constructed for SNPs
with P value< 10�10.

Simulations of Allele Frequency Differentiation under
Drift
To obtain expectations of allele frequency differentiation un-
der drift, we performed forward drift simulations on known
pedigrees. The initial allele frequencies were estimated from
four control lines and used to randomly assign alleles to in-
dividuals at the beginning of the experiment. Genetic drift
was then simulated by random pass of alleles from parents to
offspring. Finally, the results expected from sequencing were
obtained by adding pooling and sequencing variation as ex-
plained in detail elsewhere (Konczal el al. 2015). To obtain
read counts expected from simulations, information about
coverage was sampled from the empirical distribution, and
such number of reads was sampled randomly with probability
of obtaining the reference variant given by the simulated
frequency. Simulations were performed separately for allele
frequency spectra derived from all, synonymous, nonsynon-
ymous, UTR-located, and noncoding SNPs. Additionally, to
control for linkage of SNPs within contigs, haplotype-based
drift simulations were performed in three steps: haplotypes in
the base population were simulated using information about
genetic variation from the control lines and some assump-
tions about natural population of bank voles (1); these hap-
lotypes were used for pedigree-based simulations and
estimation of allele frequency (2); and the results were com-
pared between the observed data and simulations (3).
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In the first step, we estimated for each contig variation in
the base population. Nucleotide diversity calculated for each
control line (pt) was corrected for the loss of variation during
the experiment according to the formula:

p0 ¼
ie�

t
2N

ði� 1Þpt
;

where i is the number of individuals sequenced, t is the
number of generations (13), and N is the effective popula-
tion size estimated from pedigree (Charlesworth and
Charlesworth 2010). Mean p0 calculated from four control
lines was then used as the estimate of the population mu-
tation rate (h) in the base population. Values of h together
with information about contig length were used to simulate
haplotypes in the base population. To introduce recombi-
nation in the genealogical process producing these haplo-
types, we assumed effective population size Ne¼ 105 and
recombination rate of r¼ 5.8 � 10� 9 per bp as estimated
for the mouse (Jensen-Seaman et al. 2004). Both Ne and r
values are only very crude estimates or even educated
guesses, but details should not matter too much as long
as some recombination is allowed. For each contig 1,000
sets of haplotypes were simulated with ms (Hudson 2002).

In the second step, haplotypes were randomly assigned to
individuals at the beginning of the experiment, and pedigree-
based simulations were performed as described above for
independent SNPs. Forward drift simulations were performed
1,000 times, each time with different set of haplotypes. This
approach assumes no recombination within contigs during
the experiment, which appears reasonable given its time scale
and effective population sizes.

Finally, the total number of SNPs and number of SNPs with
nonoverlapping allele frequencies were compared between
the observed data and simulations. To minimize the effect
of rare variants which are rarely called from pooled data, we
removed all SNPs with mean minor allele frequency in four
control lines< 0.0125 (singletons).

Expression Analyses
To identify differentially expressed genes, we mapped reads to
the reference transcriptomes with bowtie and used Trinity
pipeline with EdgeR Bioconductor and RSEM (Gentleman
et al. 2004; Grabherr et al. 2011; Li and Dewey 2011). Only
contigs for which the sum of expected counts over all samples
was higher than 10 were used for analyses.

We found that expression of twice as many genes was
differentiated in aerobic as in predatory lines. This difference
may be partially explained by the newer release of software
(edgeR) used for analyses of predatory lines, but even when
older version was applied, sequenced in both cases liver tran-
scriptomes had much more contigs differentially expressed in
aerobic (278) than in predatory lines (178).

To statistically test for separate clustering of transcrip-
tional profiles of selected and control lines, we used similar
strategy to that for FST. We used the table of expression
values (FPKM [Fragments Per Kilobase of exon per Million
fragments mapped], TMM normalized) and calculated

distance matrix (dist() function) followed by calculation of
the ratio of between treatment to within treatment vari-
ance. The statistical significance of this ratio was assessed
through 1,000 randomizations. Differences between lines in
genome-wide transcriptional profiles were visualized with
multidimensional scaling (plotMDS {edgeR}).

Data Accessibility
Raw sequencing reads are available in the NCBI BioProject
PRJNA296483. The reference transcriptome, its annotation,
entire datasets about allele frequencies and expression, and
used in this project scripts are available at the Dryad Digital
Repository (doi:10.5061/dryad.13t00).

Supplementary Material
Supplementary figures S1–S8 and tables S1–S6 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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